Illicit drugs - environmental occurrence, fate and toxicity

Pandian Govindarasu

B.Sc. (Agriculture), M.Sc. (Agricultural Entomology)

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Global Centre for Environmental Remediation

Faculty of Science and Information Technology

February 2016

DECLARATION

I declare that:

This thesis presents work carried out by myself and does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university. To the best of my knowledge it does not contain any materials previously published or written by another person except where due reference is made in the text; and all substantive contributions by others to the work presented, including jointly authored publications, are clearly acknowledged.

Pandian Govindarasu

Signed _____

Date: <u>19 February 2016</u>

ACKNOWLEDGEMENTS

It would not have been possible to complete my thesis without the guidance of my supervisors, help from CERAR staff and friends, and support from my wife and family.

First and foremost, I wish to thank Professor Mallavarapu Megharaj my principle supervisor for his guidance, caring, patience and providing me with an excellent atmosphere for doing my research work. I thank him once again for his continuous motivation and belief in me to carry out this novel PhD topic in one of the best environmental science research laboratory.

I would like to express my deepest gratitude to my associate supervisor, Professor Ravi Naidu for giving me an opportunity to carry out this research project under his supervision. I seriously appreciate his suggestions, advices and comments all through my research. I also thank Cooperate Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) for supporting my research and providing me with scholarship.

I take this opportunity to thank to Dr. Raktim Pal (Co-supervisor), who always willing to help and give his best suggestions throughout my PhD programme. Many thanks to Dr. Paul Kirkbride for his advice and support to finish my research work successfully on time am truly thankful to Dr. Paul Pigue for providing me with the test chemicals and technical advice entire of my PhD candidature. Special thanks goes to Dr. Logesh and Dr. Prasath (for their help with proof reading, Daphnia study, earthworm photograph, Minitab etc.,), Dr. Raja, Vilma and Peter (for their help with analytical instruments), Dr. Kannan (for his help with sample collection and comet assay), Dr. Thavamani (for his help with earthworms studies and materials), Srinithi (for her help with comet assay). I would also like to thank Suresh, Renga (Jeffries), Vidhya, Vimal, Anitha, Kavitha, Saranya and staff and students at CERAR and CRC CARE for their timely help to complete my research work in a successful manner.

Above all, I would like to thank my wife (Amudha) and my sons (Thaarik and Nirai) for their invaluable love, personal support, sacrifice, and great patience at all times. Last, but by no means least, my heartfelt gratitude to my parents, brother and sister have given me their unequivocal support throughout, as always, for which my mere expression of thanks does not sufficient.

TABLE OF CONTENTS

LIST OF FIGURES	i
LIST OF TABLES	iv
ABSTRACT	vii
CHAPTER ONE	1
INTRODUCTION	1
CHAPTER TWO	6
ILLICIT DRUGS – ENVIRONMENTAL OCCURRENCE, FATE, AND	6
ΤΟΧΙCΙΤΥ	
Abstract	6
2.1 Introduction	6
2.2 Environmental occurrence of illicit drugs and their metabolites	8
2.2.1 Wastewater	11
2.2.2 Surface water	12
2.2.3 Sewage sludge and bio- solids	13
2.2.4 Atmospheric air	13
2.3 Environmental fate of illicit drugs	14
2.3.1 Water	14
2.3.2 Soil/sediments/sludge	15
2.4 Toxicity of illicit drugs	16
2.4.1 Toxic effects on aquatic organisms	17
2.4.2 Toxic effects on animals	18
2.4.2.1 Cocaine	18
2.4.2.2 MAP and MDMA	20
2.4.2.2.1 Neurotoxicity	21
2.4.2.2.2 Apoptosis and oxidative stress	21
2.4.2.2.3 Behavioural effects	22
2.4.3 Toxic effects on humans	22
2.4.3.1 Cocaine	22
2.4.3.2 MAP and MDMA	23
2.4.4 Toxic effects on plants	24
2.5 Conclusion	24
2.6 References	31

CHAPTER THREE	48
ILLICIT DRUGS - EMERGING CONTAMINANTS IN AN URBAN	48
ENVIRONMENT	
Abstract	48
3.1 Introduction	48
3.2 Materials and methods	50
3.2.1 Reagents and materials	50
3.2.2 Sample collection and analysis	50
3.2.3 Analysis of illicit drugs and quality control	50
3.3 Results and discussion	51
3.4 Conclusion	53
3.5 References	57
CHAPTER FOUR	65
SORPTION AND DESORPTION PATTERNS OF AMPHETAMINE-TYPE	65
SUBSTANCES (ATS) in DIFFERENT SOILS – THE INFLUENCE OF SOIL	
PROPERTIES	
Abstract	65
4.1 Introduction	65
4.2 Materials and methods	66
4.2.1 Chemicals	66
4.2.2 Soils	66
4.2.3 Sorption and desorption test	67
4.2.4 Compounds extraction and analysis	69
4.2.5 Calculation of sorption parameters	69
4.3 Results and discussion	70
4.3.1 Sorption kinetics	70
4.3.2 Sorption isotherms	71
4.3.3 Sorption parameters	73
4.3.4 Correlation of sorption coefficient (Kd) with major soil properties	76
4.3.5 Desorption	77
4.4 Conclusion	79
4.5 References	80
CHAPTER FIVE	82

DEGRADATION OF COCAINE IN SOILS AND ITS ADVERSE EFFECTS ON	
EARTHWORMS (EISENIA FETIDA)	
Abstract	82
5.1 Introduction	82
5.2 Materials and methods	83
5.2.1 Chemicals	83
5.2.2 Organisms	84
5.2.3 Soils	84
5.2.4 Cocaine degradation in soil	84
5.2.5 Toxicity assay	85
5.2.6 Lipids estimation	85
5.2.7 Total antioxidant capacity	85
5.2.8 Lipid peroxidation	86
5.2.9 Comet assay	86
5.2.10 Chemical analysis	87
5.3 Results and discussion	87
5.3.1 Cocaine degradation (non-sterile and sterile)	87
5.3.2 Impact of cocaine on earthworms' weight and total lipids content	90
5.3.3 Effect of cocaine on earthworms' antioxidant capacity	91
5.3.4 Effect of cocaine on lipid peroxidation of earthworms	
5.3.5 Cocaine induced DNA damage	94
5.4 Conclusion	96
5.5 References	
CHAPTER SIX	101
METHAMPHETAMINE (MAP) TOXICITY TO EARTHWORMS (EISENIA	
FETIDA) FOLLOWING SOIL EXPOSURE	
Abstract	101
6.1 Introduction	101
6.2 Materials and methods	102
6.2.1 Chemicals and reagents	102
6.2.2 Test soils	103
6.2.3 Test species	103
6.2.4 Toxicity assay	103
6.2.5 Bioaccumulation test	103
6.2.6 Reproduction test	103

6.2.7 Morphological and behavioural test	
6.2.8 Comet assay	104
6.2.9 Chemical analysis	104
6.3 Results and discussion	104
6.4 Conclusion	110
6.5 References	112
CHAPTER SEVEN	115
OVERDOSES OF PSEUDOEPHEDRINE (PSE) CHRONIC EXPOSURE TO	115
EARTHWORMS – IMPACTS ON LIFE PARAMETERS AND DNA	
Abstract	115
7.1 Introduction	115
7.2 Materials and methods	116
7.2.1 Soil collection and preparation	116
7.2.2 Reagents	116
7.2.3 Earthworms	117
7.2.4 Toxicity and bioaccumulation test	117
7.2.5 Reproduction test	117
7.2.6 Morphological and behavioural test	117
7.3 Results and discussion	117
7.4 Conclusion	122
7.5 References	124
CHAPTER EIGHT	127
ACUTE TOXICITY AND GENOTOXICITY OF AMPHETAMINE-TYPE	127
STIMULANT METHAMPHETAMINE AND ITS PRECURSOR	
PSEUDOEPHEDRINE TO DAPHNIA CARINATA	
Abstract	127
8.1 Introduction	127
8.2 Materials and methods	129
8.2.1 Test organism and culture condition	129
8.2.2 Test compounds	
8.2.3 Test water	129
8.2.4 Acute toxicity test	129
8.2.5 Chemical stability and analysis of MAP and PSE	130
8.2.6 Comet assay	130
9.2 Posulte and discussion	131

8.3.1 Physico-chemical properties of water	131
8.3.2 Acute toxicity of test chemicals	133
8.3.3 Genotoxicity of MAP and PSE to <i>D. carinata</i>	135
8.4 Conclusion	137
8.5 References	139
CHAPTER NINE	143
ACUTE AND GENO-TOXICITY OF COCAINE AND MDMA TO DAPHNIA	143
CARINATA	
Abstract	143
9.1 Introduction	143
9.2 Materials and methods	145
9.2.1 Organism and culture condition	
9.2.2 Test compounds	
9.2.3 Test water	
9.2.4 Acute toxicity test	
9.2.5 Chemical stability of cocaine and MDMA	
9.2.6 Comet assay	
9.2.7 Chemical analysis	
9.3 Results and discussion	145
9.3.1 Physico-chemical properties of water	145
9.3.2 Acute toxicity of test chemicals	146
9.3.3 Stability of cocaine and MDMA	148
9.3.4 Genotoxicity of cocaine and MDMA to D. carinata	149
9.4 Conclusion	152
9.5 References	153
CHAPTER TEN	156
PHYTOTOXICITY OF ILLICIT DRUGS TO LEMNA MINOR L.	156
Abstract	156
10.1 Introduction	156
10.2 Materials and methods	158
10.2.1 Chemicals	158
10.2.2 Cultivation and growth of <i>L. minor</i> L.	158
10.2.3 Growth parameters	158
10.2.4 Chlorophyll and free proline estimation	159
10.2.5 Bioaccumulation of illicit drugs	160

10.2.6 Chemical analysis	160
10.3 Results and discussion	160
10.3.1 Effect of illicit drugs on growth parameters (frond number, RGR and fresh	160
weight)	
10.3.2 Effect of illicit drugs on inhibition of growth	165
10.3.3 Illicit drugs tissue accumulation	169
10.3.4 Chlorophyll and proline content	170
10.4 Conclusion	172
10.5 References	173
CHAPTER ELEVEN	176
SUMMARY AND CONCLUSIONS	176
11.1 This research has demonstrated that	177
11.2 Propositions for future research	178

LIST OF FIGURES

Figure 3.1	Geographical locations of the sampling points	55
Figure 4.1	Sorption kinetics of MAP & MDMA in 3 experimental soils	70
Figure 4.2	A plot for the sorbed amount ($\mu g g^{-1}$) of MAP & MDMA in 3	72
	experimental soils as a function of equilibrium concentration (μ g mL ⁻¹)	
Figure 4.3	Desorption pattern of MAP & MDMA in 3 experimental soils	77
Figure 5.1	Non-sterile degradation of cocaine in three test soils	85
Figure 5.2	Sterile degradation of cocaine in three test soils	88
Figure 5.3	Effect of cocaine on earthworms' weight and lipids after 28 days soil	90
	exposure. Results are expressed as mean + SD.* p < 0.05 when	
	compared to control and treatments. Different letters show statistically	
	difference at $p < 0.05$ (ANOVA)	
Figure 5.4	Effect of cocaine on total antioxidant capacity of earthworm after 28	92
	days soil exposure in soil	
Figure 5.5	Effect of cocaine on earthworms lipid peroxidation after 28 days soil	94
	exposure	
Figure 5.6	DNA damage induced by cocaine in <i>E. fetida</i> . Results are expressed	95
	as mean + SD.* p < 0.05 when compared to control and treatments.	
	(% tail DNA & olive tail movement - ANOVA, p < 0.05)	
Figure 5.7	DNA damage in <i>E. fetida</i> exposed to cocaine (a). Control with no or	96
	minimal DNA damage (b). DNA damage in cocaine exposed <i>E. fetida</i>	
	in soil	
Figure 6.1	MAP effect on earthworm weight changes (%) over control	108
Figure 6.2	MAP effects on earthworm reproduction (%) over control	108
Figure 6.3	Effects of MAP in earthworm following 28 days exposure in soil. (a)	109
	Control. (b) Earthworm coiling (20 mg kg ⁻¹). (c) Dehydrated earthworm	
	(50 mg kg ⁻¹⁾ . (d) Cuticle damage and fragmentation (100 mg kg ⁻¹)	
Figure 6.4	DNA damage induced by MAP in earthworms. Results are expressed	110
	as mean + SD.* p < 0.05 when compared to control and treatments.	
	(% tail DNA - ANOVA, <i>p</i> < 0.05 & olive tail movement - Dunett test, <i>p</i>	
	< 0.05)	
Figure 6.5	DNA damage in MAP exposed earthworms (<i>E. fetida</i>) as analysed by	110
	the comet assay. (a). Control with no or minimal DNA migrating into	
	the tail region. (b). MAP 5 mg kg ⁻¹ exposed worms DNA migrating into	

	the tail region as a result of strand	
	breakage	
Figure 7.1	PSE effects on earthworms weight changes (%) over control	118
Figure 7.2	PSE effects on earthworms reproduction (%) over control	121
Figure 7.3	DNA damage induced by PSE in earthworms. Results are expressed	122
	as mean + SD.* p < 0.05 when compared to control and treatments.	
	(% tail DNA - ANOVA, $p < 0.05$ & olive tail movement - Dunett test, p	
	< 0.05)	
Figure 7.4	DNA damage in PSE exposed earthworms (<i>E. fetida</i>) as analysed by	122
	the comet assay. (a). Control with no or minimal DNA migrating into	
	the tail region. (b). PSE exposed (5 mg kg ⁻¹) worms DNA migrating	
	into the tail region as a result of strand breakage	
Figure 8.1	DNA damage induced by MAP and PSE to <i>D. carinata</i> . Results are	136
	expressed as mean + SD.* p < 0.05 when compared to control and	
	treatments. (% tail DNA & olive tail movement - ANOVA, p < 0.05)	
Figure 8.2	DNA damage in <i>D. carinata</i> exposed to MAP and PSE. (a). Control	137
	with no or minimal DNA damage (b) DNA damage in MAP 1 mg L^{-1}	
	exposed <i>D. carinata</i> and (c) DNA damage in PSE 1 mg L ⁻¹	
Figure 9.1	DNA damage induced by cocaine and MDMA to <i>D. carinata</i> . Results	151
	are expressed as mean + SD.* p < 0.05 when compared to control and	
	treatments. (% tail DNA & olive tail movement - ANOVA, p < 0.05)	
Figure 9.2	DNA damage in <i>D. carinata</i> exposed to cocaine and MDMA. (a).	152
	Control with no or minimal DNA damage (b). DNA damage in cocaine	
	(1 mg L ⁻¹) exposed <i>D. carinata</i> (c) DNA damage in 1 mg L ⁻¹ of MDMA	
	exposed <i>D. carinata</i> in water	
Figure 10.1	L. minor L. growth (total frond number) after exposure to cocaine,	161
	MAP, MDMA and PSE for 7d. Bars denote standard deviation $(n = 3)$.	
	Different letters indicate a significant difference (1-way ANOVA, $p < p$	
	0.05)	
Figure 10.2	L. minor L. growth (fresh weight) after exposure to cocaine, MAP,	162
	MDMA and PSE for 7d. Bars denote standard deviation ($n = 3$).	
	Different letters indicate a significant difference (1-way ANOVA, p	
		102
Figure 10.3	L. minor L. growth (relative growth rate) after exposure to A) Cocaine	163
	B) MAP C) MDMA and D) PSE for 7d. Bars denote standard deviation	

	(n = 3). Different letters indicate a significant difference (1-way ANOVA	
	<i>p</i> < 0.001)	
Figure 10.4	L. minor L. growth (inhibition of growth based upon fresh weight and	166
	frond number) after exposure to A) Cocaine, B) MAP, C) MDMA, D)	
	PSE for 7d	

LIST OF TABLES

Table 2.1	Selected physico-chemical properties of major illicit drugs and	9
	metabolites	
Table 2.2	Illigit drugg' concentrations in environmental systems	00
	mich drugs concentrations in environmental systems	20
Table 2.3	Aquatic toxicity data for illicit drugs	27
Table 3.1	Concentration of illicit drugs and their metabolites in wastewaters, sewage	54
	sludge and surface waters in Adelaide surrounding areas	
Table 2.2	(aunalementary) - Comple collection dataile	61
	(supplementary) . Sample collection details	01
Table 4.1	Basic physico-chemical properties of the experimental soils	68
Table 4.2	Summary of the sorption parameters of MAP & MDMA in 3 experimental	75
	soils	
Table 4.3	Summary of the sorption parameters of MAP & MDMA in 3 experimental	74
	soils (K_d , K_{oc} & Gibb's energy)	
Table 4.4	Correlation of sorption coefficient (K_d) of MAP & MDMA with soil properties.	76
Table 4.5	Amount of chemical adsorbed and desorbed by soil from MAP (53.6 μ g	79
	mL ⁻¹) and MDMA 54.7 μ g mL ⁻¹) test solution	
Table 5.1	Regression equation, rate constant (k), and half-life $(t_{1/2})$ values for the	89
	degradation of cocaine under non-sterile and sterile conditions	
Table 6.1	MAP soil concentration, bioaccumulation and biological parameters of	107
	earthworms	
Table 7.1	PSE soil concentration, bioaccumulation and biological parameters of	120
	earthworms	
Table 8.1	Physico-chemical properties of waters	132
Table 8.2	Acute toxicity of methamphetamine and pseudoephedrine to Daphnia	134
	carinata	
Table 9.1	LC ₅₀ values (mg L ⁻¹) of cocaine and MDMA to <i>D. carinata</i> tested in water	146
	samples	
Table 9.2	Stability of cocaine and MDMA in water samples	149
Table 10.1	EC_{50} values (mg L ⁻¹) of illicit drugs to <i>L. minor</i> L. on the basis of growth	168
	measured as fresh weight and frond number (7d)	
Table 10.2	Illicit drugs concentration in medium and in L. minor L. tissues, exposed in	169
	10 mg L ⁻¹ for 7d	

Table 10.3	Chlorophyll contents after 7d exposure of <i>L. minor</i> L. to illicit drugs	171
Table 10.4	Effect of illicit drugs on Proline content (μ M g ⁻¹ fresh weight) in <i>L. minor</i> L.	172
	7d exposure	

LIST OF ABBREVIATIONS

ATSs	Amphetamine-type stimulants
MAP	Methamphetamine
MAS	Methylamphetamine sulphate
PSE	Pseudoephedrine
P2P	Phenyl-2-propanone
MDMA	3, 4-methylenedioxymethamphetamine
COC	Cocaine
BE	Benzoylecgonine
EME	Ecgonine methyl ester
THC	Δ ⁹ -tetrahydrocannabinol
LSD	Lysergic acid diethylamide
ECs	Emerging contaminants
K _d	Sorption coefficient
DOC	Dissolved organic carbon
OC	Organic carbon
RGR	Relative growth rate
ROS	Reactive oxygen species
WWTPs	Wastewater treatment plants
HPLC-MS	High performance liquid chromatography - mass spectroscopy

ABSTRACT

Illicit drugs are those compounds whose non-medical use is prohibited by international legislation and mainly belong to the classes of opiates, cocaine, cannabis, amphetamines and ecstasy-group substances (UNODC, 2007; Hall et al., 2008). These chemicals have been proven to be toxic to humans and animals in that they cause numerous and potentially precarious side effects. Reports on illicit drugs and their metabolites ending up in the environment have been increasing worldwide. These problems occur mainly due to human consumption and also disposal into sewage networks by the illegal manufacturesrs. Although, the reported environmental concentrations of illicit drugs are low, their potent pharmacological properties and the mixing of illicit drugs along with similar compounds in soil and water could be toxic to non-target organisms and pose a risk to human health. The data available on the environmental occurrence and distribution pattern of illicit drugs in Australia (i.e. South Australia), fate in soil and water and ecotoxicity on aquatic and terrestrial biota are limited given that previously published research has focused mainly only on sewage epidemiology and human health. This thesis focuses on the: (a) occurrence and distribution pattern of illicit drugs and their metabolites in South Australian wastewater (influent and effluent), surface waters, sewage sludge and sediments; (b) fate of illicit drugs in soils; and (c) toxicity of illicit drugs and their metabolites to biota including daphnia, duckweed, and earthworms.

The occurrence and distribution patterns of illicit drugs and their metabolites in specific regions of South Australian wastewater, sewage sludge, surface waters and sediments were investigated. Results indicated that 3 out of 6 illicit drugs were found to be present in wastewaters were at concentrations ranging from 12 to 1670 ng L⁻¹. Methamphetamine (MAP) was the only test compound detected in sewage sludge (2 µg kg⁻¹ dry samples). In surface waters MAP, 3, 4-methylenedioxymethamphetamine (MDMA) and benzoylecgonine (BE) were recorded in 4 out of 20 test locations with a concentration of 5 to 11 ng L⁻¹. Hence, water from wastewater treatment plants (WWTPs) could be the primary source of illicit compounds contaminating the environment. Although the environmental concentrations of these contaminants are low, their impact on aquatic organisms and risk to human health cannot be overlooked.

The sorption and desorption patterns of MAP and MDMA (alone and as mixture) were determined in three different soils using batch equilibration experiments. MAP and MDMA reached equilibration within 12 h with initial rapid uptake and then gradually reached equilibrium. Sorption data were analysed employing the Langmuir and Freundlich models, and the results showed that the Freundlich model is the best fit and described the sorption process of MAP and MDMA (alone and as mixture) in three test soils. Sorption of the illicit drugs in soils followed the order: MAP > MAP mixture > MDMA mixture > MDMA. The sorption

coefficient (K_d) was positively correlated with soils' organic carbon (OC), dissolved organic carbon (DOC) and clay for MAP, while for MDMA it was clay, OC and DOC. In addition, the following soil characters such as cation exchange capacity (CEC) > electrical conductivity (EC) > sand were negatively correlated irrespective of the treatments. Furthermore, desorption was assessed when the sorbed particles were released into solution in the following order: MAP > MAP mixture > MDMA > MDMA mixture. These findings could provide an insight into the sorption and desorption patterns, and inform us about the transport and fate of MAP and MDMA in the environment and also their risk assessment.

The persistence of cocaine was investigated in a laboratory experiment for 120 days involving three different South Australian soils under both non-sterile and sterile conditions. Cocaine degrades very rapidly in a non-sterile condition in all three test soils (half-life between 2.2 and 3.9 days) compared to sterile condition (half-life between 40.8 and 54.1 days). Cocaine degradation products such as benzoylecogonine (BE) and ecgonine methyl ester (EME) were detected in both conditions. BE was relatively stable for a period of time in non-sterile soil compared to cocaine.

Chronic toxicity of illicit drugs (MAP, PSE and cocaine) to earthworm (*Eisenia fetida*) was studied in a soil. No mortality was recorded even at the highest concentration, and results showed loss in weights for all treatments. Chronic exposure of adult earthworms to MAP, PSE and cocaine showed changes in their morphology and behaviour. Their reproduction capacity also declined especially above 20 mg kg⁻¹ concentration. Exposure at concentrations of 50 – 200 mg kg⁻¹ significantly reduced both cocoon and juvenile stages. Earthworm chronic exposure to cocaine induced and significantly increased DNA damage, olive tail moment, and lipid peroxidation at > 1 mg kg⁻¹ and had a significant impact on total antioxidant capacity at > 25 mg kg⁻¹. Overall, these finding suggests that soil contamination with illicit drugs does constitute a threat to soil biota and the environment

The acute and geno-toxicity of MAP, PSE, MDMA and cocaine to a freshwater cladoceran, *Daphnia carinata* were studied in both cladoceran and natural water collected from local creeks. The cladoceran toxicity followed the order: cocaine > MAP > MDMA > PSE. All these test chemicals were relatively less toxic in non-sterile compared to sterile natural water, which may be due to the influence of varied physico-chemical and biological parameters of natural water. In all the test media, MAP, PSE and MDMA were found to be relatively stable while cocaine was metabolized to BE and ecgonine methyl ester (EME). Also, these chemicals at lower concentrations in water had significant genotoxic effects on *D. carinata* in comparison to the controls, suggesting that even low level chronic exposure of these compounds to *D. carinata* can cause serious harm, including developmental and reproductive toxicity.

The toxic effects of commonly abused illicit drugs and a precursor were assessed by examining their impact on duckweed (*Lemna minor* L.), a common aquatic plant. Growth attributes (frond numbers, fresh weight and relative growth rate) and biochemical parameters (chlorophyll and proline) content was affected with the increase in the concentrations of illicit drugs. Of these parameters, fresh weight was the most appropriate indicator for validating the effects of illicit drugs. The toxicity of these compounds was followed the order: cocaine > MAP > MDMA > PSE. Overall, the results demonstrate the usefulness of *L. minor* L. as an illicit drug's aquatic toxicity indicator for reliable assessment of phytotoxic potential of complex aquatic systems.